

Murphy

Murphy is a text processing library for working with Twitter data, built on top of Dask

Murphy is broken down into several components and subcomponents:

	Data Preprocessing: Creating scalable tools for helping researchers moving forward

	NLP Tools: NLP cleaning tools for tokenization and Lemmatisation

	Filters: Removing retweet strings, emojis, and other annoyances

	Batch Processing: Applying batch based workloads to make data processing easier

	Applying AI Models: Creating AI models built by us for various purposes

	Sentiment Analysis: Predicting sentiments in tweets!

	Emoji Prediction: Predicting which emojis would work best for a tweet (coming soon!)

	And more! We’re still developing, so ideas and contributions are much appreciated!

[image: _images/overview-diagram.png]

Built on top of Dask

By building on top of Dask, we’re able to get massive performance boosts and scalability.

You also have access to individual Dask objects like Dask DataFrames and Dask Bags directly, so you can continue to experiment on your own after using our tools.

Getting Started

	Install Murphy

	Quick Start Guide

	Murphy Use Case

API

	Murphy’s API

	Murphy Sentiment Classification

Install Murphy

Installing with Pip

Installing with pip is fairly straight forward. Just run:

pip install smpa-murphy

Installing from Source

Installing from source is fairly easy:

	Install all dependencies:

pip install -r requirements.txt

	Pull the repo:

git clone https://github.com/Social-Media-Public-Analysis/murphy.git

	Move over to the main directory:

cd murphy

	Install with setup.py:

python setup.py install

Test

To test that everything is working well:

pytest tests/

Quick Start Guide

Installation

To install murphy on your machine, just install via pip:

pip install smpa-murphy

For more information on installation, check out our install guide.

Starting up Dask (optional)

Using Dask is optional, and while all of our code is backwards compatible with Pandas, being able to launch your own Dask Cluster or having access to the Dask Dashboard [https://docs.dask.org/en/latest/diagnostics-distributed.html] or for any of it’s other use cases [https://stories.dask.org/en/latest/]

To use Dask, simply import it’s Client class and initialize with your configurations

from dask.distributed import Client

client = Client(<your configs here>)
client

You can find more information on Dask Client here [https://distributed.dask.org/en/latest/client.html]

Loading the Data

You can load datasets by pointing to where they’ve been saved from Dozent [https://github.com/Social-Media-Public-Analysis/dozent].

The syntax for doing so is as follows:

from murphy import data_loader # -> Importing murphy

data = data_loader.DataLoader(file_find_expression = 'data/test_data/*.json.bz2') # -> You can point to another location here

twitter_dataframe = data.twitter_dataframe # -> this return a dask dataframe that is lazily computed

twitter_dataframe

This is what your output should look like (in a jupyter notebook)

You might be thinking: So, my data is going to just be loaded from the file? That’s it?

Nope! Looking at a snippet from the data_loader.DataLoader documentation

>>> help(data_loader.DataLoader)

class DataLoader(builtins.object)
 | DataLoader(file_find_expression: Union[str, pathlib.Path, List[pathlib.Path]], remove_emoji: bool = True, remove_retweets_symbols: bool = True, remove_truncated_tweets: bool = True, add_usernames: bool = True, tokenize: bool = True, filter_stopwords: bool = True, lemmatize: bool = True, language: str = 'english')
 |
 | Methods defined here:
 |
 | __init__(self, file_find_expression: Union[str, pathlib.Path, List[pathlib.Path]], remove_emoji: bool = True, remove_retweets_symbols: bool = True, remove_truncated_tweets: bool = True, add_usernames: bool = True, tokenize: bool = True, filter_stopwords: bool = True, lemmatize: bool = True, language: str = 'english')
 | This is where you can specify how you want to configure the twitter dataset before you start processing it.
 |
 | :param file_find_expression: unix-like path that is used for listing out all of the files that we need
 |
 | :param remove_emoji: flag for removing emojis from all of the twitter text
 |
 | :param remove_retweets_symbols: flag for removing retweet strings from all of the twitter text (`RT @<retweet_username>:`)
 |
 | :param remove_truncated_tweets: flag for removing all tweets that are truncated, as not all information can be
 | found in them
 |
 | :param add_usernames: flag for adding in the user names from who tweeted as a separate column instead of parsing
 | it from the `user` column
 |
 | :param tokenize: tokenize tweets to make them easier to process
 |
 | :param filter_stopwords: remove stopwords from the tweets to make them easier to process
 |
 | :param lemmatize: lemmatize text to make it easier to process
 |
 | :param language: select the language that you want to work with

Here, we can see that the DataLoader class has tons of configurable parameters that we can use to make development easier, including built in tokenization, lemmatization, and more!

These are automatically run when you compute the your twitter_dataframe, meaning that these functions are automatically implemented and parallelized, right out of the box!

Now what?

Now, you can explore the data to your heart’s content! We suggest looking over this Dask Tutorial [https://tutorial.dask.org/00_overview.html] if you’re not familiar with Dask already, as it’ll make exploring the dataset easier

Murphy Use Case

	First and foremost, Murphy is designed to be scalable.

	Second, Murphy is designed with functionality in mind, and we hope it becomes the first tool people like you use to play with, understand, and visualize your data.

	Finally, you also have access to the flexibility of Dask DataFrames [https://docs.dask.org/en/latest/dataframe.html] after we’re done with it, so you can do whatever you want after using Murphy, including switching over to Spark [https://docs.dask.org/en/latest/spark.html#reasons-to-choose-both].

Work with Data from Dozent: the best twitter scraper

The twitter data you can get from Dozent [https://github.com/Social-Media-Public-Analysis/dozent] is extremely large, estimated to be 52.56TB per year and while we support data from 2017 to 2020 we intend to support more data later on. In comparison, the GDELT Project [https://www.gdeltproject.org/] only works with 2.5TB of data yearly (But they do some amazing work! Seriously, check them out!)

An Exempt from Dozent’s README:

Dozent

Dozent is a powerful downloader that is used to collect large amounts of Twitter data from the
internet archive.

It is built on top of PySmartDL and multithreading, similar to how traditional download accelerators
like axel, aria2c and aws s3 work, ensuring that the biggest bottlenecks are your network and your
hardware.

The data that is downloaded is already heavily compressed to reduce download times and save local
storage. When uncompressed, the data can easily add up to several terabytes depending on the
timeframe of data being collected.

Built-in tools, made to scale

Complex Algorithms

Murphy comes prepackaged with scalable and efficient implementations of various algorithms that you already use for NLP type tasks, such as tokenization, lemmatization, functionality to remove emojis, redundant and annoyingly irrelevant information and more!

Machine Learning Models

Murphy implements simple ML models such as sentiment classification along with various different versions that might suit your best needs. While this is quite limited right now, we are actively working on deploying more ML models that can provide more insight into this dataset

Machine Learning Models

	ML Model

	Category

	Function

	Availability

	NLTK

	Classification

	Sentiment Prediction, built using NLTK [https://www.nltk.org/]

	✔️

	TextBlob

	Classification

	Sentiment Prediction, built using TextBlob [https://textblob.readthedocs.io/en/dev/]

	✔️

	Emoji Predictor

	Classification

	Predicting the best emoji for a sentence

	⌚

Murphy’s API

Data Loader

A data loader that converts json.bz2 files into a functional Dask Dataframe.

While this module has a ton of functionality, most of it has been abstracted into it’s constructor (__init__)

	
class murphy.data_loader.DataLoader(file_find_expression: Union[str, pathlib.Path, List[pathlib.Path]], remove_emoji: bool = True, remove_retweets_symbols: bool = True, remove_truncated_tweets: bool = True, add_usernames: bool = True, tokenize: bool = True, filter_stopwords: bool = True, lemmatize: bool = True, language: str = 'english')

	Bases: object

This is where you can specify how you want to configure the twitter dataset before you can load it. It’s functionality includes:

	removing emojis

	removing retweets symbols

	lemmatizing the text

	filtering by language

	and more!

	Parameters

	
	file_find_expression – unix-like path that is used for listing out all of the files that we need

	remove_emoji – flag for removing emojis from all of the twitter text

	remove_retweets_symbols – flag for removing retweet strings from all of the twitter text (RT @<retweet_username>:)

	remove_truncated_tweets – flag for removing all tweets that are truncated, as not all information can be
found in them

	add_usernames – flag for adding in the user names from who tweeted as a separate column instead of parsing
it from the user column

	tokenize – tokenize tweets to make them easier to process

	filter_stopwords – remove stopwords from the tweets to make them easier to process

	lemmatize – lemmatize text to make it easier to process

	language – select the language that you want to work with

	
static get_files_list(pathname: Union[str, pathlib.Path], recursive: bool = False, suffix: str = '*.json*') → List[str]

	Function to get files from the given pathname.

Searches in the directory when pathname leads to a directory with the option for adding a custom suffix

If pathname given is a directory, searches in the directory

	Parameters

	
	pathname – pathname from where we can get the files

	recursive – Flag for searching recursively

	suffix – suffix to search for files when a pathname leads to a directory is given

	Raises

	ValueError – When no files are found based on the pathname

	Returns

	

Filters

author: v2thegreat (v2thegreat@gmail.com)

Package to filter out irrelevant rows that might not be wanted for processing

	TODO:
	
	This package is written with the hopes to better understand what problems processing such a dataset would be

encountered, and it is hence written with the understanding that this and other scripts will be refactored
- Add tests

	
class murphy.filters.Filter(remove_emoji: bool = True, remove_retweets: bool = False, remove_truncated_tweets: bool = False)

	Bases: object

	
static filter_emoji(twitter_dataframe: Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

	
static filter_retweet_text(twitter_dataframe: Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

	
static mark_truncated_tweets(tweet_dataframe: Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

	
static remove_truncated_tweets(tweet_dataframe: Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

	
run_filters(twitter_dataframe: Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

NLP Tools

	
class murphy.nlp_tools.NLPTools(tokenize: bool = True, filter_stopwords: bool = True, lemmatize: bool = True, language: str = 'english')

	Bases: object

	
filter_stopwords(tweet_dataframe: dask.dataframe.core.DataFrame) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

	
lemmatize_tweets(tweet_dataframe: dask.dataframe.core.DataFrame) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

	
nlp = <spacy.lang.en.English object>

	

	
run_tools(tweet_dataframe: dask.dataframe.core.DataFrame) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

	
tokenize_tweets(tweet_dataframe: Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

Batch Processing

Note

This module is written with the hopes to better understand what problems processing such a dataset would be encountered, and hence written in it’s current flexible manner

Module to process tweets from the data_loading in batches to reduce the workload on the scheduler
by applying various functions in batches

	
class murphy.batch_processing.Batches

	Bases: object

	
static process_in_batches(file_paths: Iterable[str], read_func: Callable[[str], Any], func_to_apply: Callable[[Any], Any], verbose: bool = True) → Dict[str, Any]

	Function to process data in batches to circumvent Dask Scheduler’s limitations (max of 100k tasks for example)

	Parameters

	
	file_paths – path of files that need to be individually processed

	read_func – function to read the file. This must return an object (for example: Dask Bag, Dask Array, str)

	func_to_apply – function to apply on the object that’s returned on the read_func

	verbose – show progress bar?

	Returns

	a dictionary that has the schema: {file_name: func_to_apply’s return value}

	
static process_in_batches_generator(file_iterator: Iterable[str], read_func: Callable[[str], Any], func_to_apply: Callable[[Any], Any]) → Iterable[Any]

	Function to process data in batches to circumvent Dask Scheduler’s limitations for 100k tasks

	Parameters

	
	file_iterator – iterator that contains a file names

	read_func – function to read the file. This must return an object (for example: Dask Bag, Dask Array, str)

	func_to_apply – function to apply on the object that’s returned on the read_func

	Returns

	a dictionary that has the schema: {file_name: func_to_apply’s return value}

Module contents

	
class murphy.Batches

	Bases: object

	
static process_in_batches(file_paths: Iterable[str], read_func: Callable[[str], Any], func_to_apply: Callable[[Any], Any], verbose: bool = True) → Dict[str, Any]

	Function to process data in batches to circumvent Dask Scheduler’s limitations (max of 100k tasks for example)

	Parameters

	
	file_paths – path of files that need to be individually processed

	read_func – function to read the file. This must return an object (for example: Dask Bag, Dask Array, str)

	func_to_apply – function to apply on the object that’s returned on the read_func

	verbose – show progress bar?

	Returns

	a dictionary that has the schema: {file_name: func_to_apply’s return value}

	
static process_in_batches_generator(file_iterator: Iterable[str], read_func: Callable[[str], Any], func_to_apply: Callable[[Any], Any]) → Iterable[Any]

	Function to process data in batches to circumvent Dask Scheduler’s limitations for 100k tasks

	Parameters

	
	file_iterator – iterator that contains a file names

	read_func – function to read the file. This must return an object (for example: Dask Bag, Dask Array, str)

	func_to_apply – function to apply on the object that’s returned on the read_func

	Returns

	a dictionary that has the schema: {file_name: func_to_apply’s return value}

	
class murphy.DataLoader(file_find_expression: Union[str, pathlib.Path, List[pathlib.Path]], remove_emoji: bool = True, remove_retweets_symbols: bool = True, remove_truncated_tweets: bool = True, add_usernames: bool = True, tokenize: bool = True, filter_stopwords: bool = True, lemmatize: bool = True, language: str = 'english')

	Bases: object

This is where you can specify how you want to configure the twitter dataset before you can load it. It’s functionality includes:

	removing emojis

	removing retweets symbols

	lemmatizing the text

	filtering by language

	and more!

	Parameters

	
	file_find_expression – unix-like path that is used for listing out all of the files that we need

	remove_emoji – flag for removing emojis from all of the twitter text

	remove_retweets_symbols – flag for removing retweet strings from all of the twitter text (RT @<retweet_username>:)

	remove_truncated_tweets – flag for removing all tweets that are truncated, as not all information can be
found in them

	add_usernames – flag for adding in the user names from who tweeted as a separate column instead of parsing
it from the user column

	tokenize – tokenize tweets to make them easier to process

	filter_stopwords – remove stopwords from the tweets to make them easier to process

	lemmatize – lemmatize text to make it easier to process

	language – select the language that you want to work with

	
static get_files_list(pathname: Union[str, pathlib.Path], recursive: bool = False, suffix: str = '*.json*') → List[str]

	Function to get files from the given pathname.

Searches in the directory when pathname leads to a directory with the option for adding a custom suffix

If pathname given is a directory, searches in the directory

	Parameters

	
	pathname – pathname from where we can get the files

	recursive – Flag for searching recursively

	suffix – suffix to search for files when a pathname leads to a directory is given

	Raises

	ValueError – When no files are found based on the pathname

	Returns

	

	
class murphy.Filter(remove_emoji: bool = True, remove_retweets: bool = False, remove_truncated_tweets: bool = False)

	Bases: object

	
static filter_emoji(twitter_dataframe: Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

	
static filter_retweet_text(twitter_dataframe: Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

	
static mark_truncated_tweets(tweet_dataframe: Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

	
static remove_truncated_tweets(tweet_dataframe: Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

	
run_filters(twitter_dataframe: Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]) → Union[dask.dataframe.core.DataFrame, pandas.core.frame.DataFrame]

	

Murphy Sentiment Classification

	
class murphy.classification.sentiments.Sentiments

	Bases: object

	
classmethod multiple_sentiment_analysis(text: str) → Dict[str, float]

	Returns the sentiment using all implemented models as a dictionary

	Parameters

	text – text to run sentiment analysis on

	Returns

	key pair values of name of the sentiment function and their estimations

	
static sentiment_analysis_nltk(text: str) → float

	Run sentiment analysis using the library NLTK. Runs default sentiment on vader lexicon
Works based on bag of words and positive and negative word lookups

	Parameters

	text – text to be analyzed

	Returns

	sentiment compound for given text

	
static sentiment_analysis_textblob(text: str) → float

	Run sentiment analysis using the library textblob. Returns default sentiment
Works similar to NLTK’s sentiment analysis, but includes subjectivity analysis

	Parameters

	text – text to be analyzed

	Returns

	sentiment for given text

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 murphy	

 	
 	
 murphy.batch_processing	

 	
 	
 murphy.classification.sentiments	

 	
 	
 murphy.data_loader	

 	
 	
 murphy.filters	

 	
 	
 murphy.nlp_tools	

Index

 B
 | D
 | F
 | G
 | L
 | M
 | N
 | P
 | R
 | S
 | T

B

 	
 	Batches (class in murphy)

 	(class in murphy.batch_processing)

D

 	
 	DataLoader (class in murphy)

 	(class in murphy.data_loader)

F

 	
 	Filter (class in murphy)

 	(class in murphy.filters)

 	filter_emoji() (murphy.Filter static method)

 	(murphy.filters.Filter static method)

 	
 	filter_retweet_text() (murphy.Filter static method)

 	(murphy.filters.Filter static method)

 	filter_stopwords() (murphy.nlp_tools.NLPTools method)

G

 	
 	get_files_list() (murphy.data_loader.DataLoader static method)

 	(murphy.DataLoader static method)

L

 	
 	lemmatize_tweets() (murphy.nlp_tools.NLPTools method)

M

 	
 	mark_truncated_tweets() (murphy.Filter static method)

 	(murphy.filters.Filter static method)

 	
 module

 	murphy

 	murphy.batch_processing

 	murphy.classification.sentiments

 	murphy.data_loader

 	murphy.filters

 	murphy.nlp_tools

 	multiple_sentiment_analysis() (murphy.classification.sentiments.Sentiments class method)

 	
 murphy

 	module

 	
 	
 murphy.batch_processing

 	module

 	
 murphy.classification.sentiments

 	module

 	
 murphy.data_loader

 	module

 	
 murphy.filters

 	module

 	
 murphy.nlp_tools

 	module

N

 	
 	nlp (murphy.nlp_tools.NLPTools attribute)

 	
 	NLPTools (class in murphy.nlp_tools)

P

 	
 	process_in_batches() (murphy.batch_processing.Batches static method)

 	(murphy.Batches static method)

 	
 	process_in_batches_generator() (murphy.batch_processing.Batches static method)

 	(murphy.Batches static method)

R

 	
 	remove_truncated_tweets() (murphy.Filter static method)

 	(murphy.filters.Filter static method)

 	
 	run_filters() (murphy.Filter method)

 	(murphy.filters.Filter method)

 	run_tools() (murphy.nlp_tools.NLPTools method)

S

 	
 	sentiment_analysis_nltk() (murphy.classification.sentiments.Sentiments static method)

 	
 	sentiment_analysis_textblob() (murphy.classification.sentiments.Sentiments static method)

 	Sentiments (class in murphy.classification.sentiments)

T

 	
 	tokenize_tweets() (murphy.nlp_tools.NLPTools method)

Murphy’s Tools

User Interfaces

 nav.xhtml

 Table of Contents

 		
 Murphy

 		
 Install Murphy

 		
 Installing with Pip

 		
 Installing from Source

 		
 Test

 		
 Quick Start Guide

 		
 Installation

 		
 Starting up Dask (optional)

 		
 Loading the Data

 		
 Now what?

 		
 Murphy Use Case

 		
 Work with Data from Dozent: the best twitter scraper

 		
 Built-in tools, made to scale

 		
 Complex Algorithms

 		
 Machine Learning Models

 		
 Murphy’s API

 		
 Data Loader

 		
 Filters

 		
 NLP Tools

 		
 Batch Processing

 		
 Module contents

 		
 Murphy Sentiment Classification

_images/overview-diagram.png
Data Pre-Processing Al Model

Data Loading Classification

Prediction the works!

‘NLPTDD\S‘ ‘ Filters ‘ ‘ Batch ‘
Processing

‘ Emoji Prediction

‘ Sentiment ‘ ‘Moremode\sm

AN)

_static/minus.png

_static/plus.png

_static/file.png

